
Automationstechnik

Antriebs- und Steuerungstechnik

BAPS2
Brief description

rho 3

105
Version

rho 3

BAPS2
Brief description
1070 073 035-105 (94.12) GB

Reg. Nr. 16149-03

E 1993

by Robert Bosch GmbH,
All rights reserved, including applications for protective rights.

Reproduction or handing over to third parties are subject to our written permission.

Discretionary charge 10.– DM

Flexible Automation 1CONTENTS

 1BAPS2 language for the control rho3

1. BAPS2

GENERAL 2.

PROGRAM STRUCTURE 3.

COMPILER STATEMENTS 4.

PROGRAM DECLARATIONS 6.

SUBROUTINE DECLARATIONS 7.

STANDARD CONSTANTS 8.

DATA TYPES 9.

POINT DECLARATIONS 10.

GLOBAL VARIABLES 11.

ARRAY DECLARATIONS 12.

I/O ARRAY DECLARATIONS 13.

CHANNEL DECLARATIONS 14.

PROGRAM FLOW CONTROL 16.

LOGIC - ARITHMETIC OPERATIONS 18.

VALUE ASSIGNMENTS 19.

STANDARD FUNCTIONS 20.

MOVEMENT INSTRUCTIONS 26.

ACTUAL POSITION 28.

MEASUREMENT POSITION 29.

SPEEDS 30.

V / A / D FACTORS 32.

SLOPE MODES 33.

BELT SYNCHRONIZATION 34.

WORKING AREA LIMITS 35.

WRITE / READ INTERFACES 36.

FILES - I/O (READ) 38.

FILES - I/O (WRITE) 39.

PARALLEL PROCESSES 40.

SPECIAL FUNCTIONS 41.

TOOL - DAT 47.

FIXED FILES 48.

2. BAPSPIC

BAPSPIC-SYNTAX 49.

3. INDEX 53.

 2 Flexible AutomationGENERAL

 2 BAPS2 language for the control rho3

GENERAL

This manual provides a summary and brief description of the language instructions available in
BAPS2 and BAPSPIC.
Please refer to the BAPS2 programming instructions for an in-depth description of the individual
instructions of BAPS2.

Flexible Automation 3PROGRAM STRUCTURING

 3BAPS2 language for the control rho3

PROGRAM STRUCTURE

Control type declaration

Number of kinematics with kinematic names
(as defined in MPP).

Number of axes and axis names in� JC� for Kin
1. Number of axes and axis names in�WC� for
Kin 1
Number of axes and axis names in� JC� for Kin
2. Number of axes and axis names in�WC �for
Kin 2
Program name max. 8-character

All movement instructions and point entries
without kinematic entry relate to the kinematic
ma_1 (default kinematic).

Declarations for external subroutines
or processes.
Declarations for inputs/outputs

Declaration of the special functions

Order of other variable declarations is arbi�
trary, but they must be in front of BEGIN.

Declaring points for different kinematics.

Main program begin

Subroutine call

Main program end

Subroutine identification (max. 12-character)
Declaration part for the subroutine

Subroutine begin

Subroutine end

;;CONTROL = RHO3

;;KINEMATICS: (1 = ma_1 ,
2 = ma_2)

;;ma_1.JC_NAMES = A_1,A_2,A_3,A_4
;;ma_1.WC_NAMES = X_K,Y_K,Z_K,A_K

;;ma_2.JC_NAMES = B_1,B_2,B_3
;;ma_2.WC_NAMES = X_B,Y_B,Z_B

PROGRAM example

;;KINEMATICS = ma_1

EXTERNAL:maon, maoff

INPUT: 1 = partthere,
2 = slide_forwar

OUTPUT: 1 = belt_on

SPC_FCT: 1 = path_io (VALUE INTEGER:
.
.
.)

ma_1.POINT : pal_corner1,pal_corner2
ma_2.JC_POINT : @stroke_cent

BEGIN
.
.
MOVE ma_2 TO @stroke_cent
sub_example
.
.
.

PROGRAM_END

SUBROUTINE sub_example
INPUT: 4 = le_shi
REAL: counter

BEGIN
.
belt_on = 1
.

SUB_END

 4 COMPILER STATEMENTS Flexible Automation

 4 BAPS2 language for the control rho3

COMPILER STATEMENTS

Except the instructions KINEMATICS, INCLUDE and INT all compiler instructions must be declared
before the program name. Lines containing compiler instructions should have no other characters fol�
lowing the statement.

Control type declaration
currently available: rho3

IQ120
IQ140

Compiler statement DEBUGINFO + permits
programs to be debugged with the debug
system. In the case of DEBUGINFO - , de�
bugging is not possible but the IRD file is
smaller and is executed more quickly�(default:
DEBUGINF0�+).

Compiler statement WARNING - suppres�
sess output of warnings to the error file (de�
fault: WARNING +).

Consequential errors frequently occur during
the compiling process, thus very greatly in�
creasing the size of the error file. By defining
the maximum number of errors (1...100), this
statement can be used to abort the compiling
process prematurely when the specified num�
ber of errors have been detected. All errors
are output without this statement.

Defines the number of kinematics with the
relevant kinematic numbers and kinematic
names.

Defines the number of axes and axis names in
JC for Kin1.
(!!! This statement must be in one line)

Defines the number of axes and axis names in
WC for Kin1.
(!!! this statement must be in one line)

Defining that this program can run as a per�
manent process. A permanent process runs in
operating modes Auto and Manual and is not
aborted with Reset etc. (!!! this statement
must be in one line)

;;CONTROL = rho3 applies as of
Version�
TO01E

applies as of
Version
TO01I

;;DEBUGINFO+

;;DEBUGINFO -

;;WARNING+

;;WARNING -

applies as of
Version
TO01I

applies as of
Version
TO01I

;;ERROR = 10

;;KINEMATICS : (1=ma_1,
 2=ma_2)

applies as of
Version
TO01E

;;ma_1.JC_NAMES= A_1,A_2 applies as of
Version
TO01E

;;ma_1.WC_NAMES= X_C,Y_C applies as of
Version
TO01E

;;PROCESS_KIND=PERMA�
NENT

applies as of
Version
TO01E

Flexible Automation 5COMPILER STATEMENTS

 5BAPS2 language for the control rho3

Changes the default kinematic(the default
kinematic is always no. 1 unless otherwise
defined in this declaration.
(!!! this statement must be in one line)

The drive type is defined.
The statement is skipped by the BAPS 2 com�
piler. It only affects the BAPS-ECO compiler
for the BOSCH IQ120 control.

The compiler includes file EXDAT.QLL at this
point and generates the IRD code for it.
EXDAT.QLL may have no other INCLUDE
statements.

Interpolation mode presetting
The interpolation mode can be defined by the
compiler statement in a program. The default
is PTP.

 Ditto with kinematic assignment

The compiler statement can be used to pre�
vent a user program being aborted if an inter�
face error occurs.

The compiler statement indicates that a user
program is to be aborted if an interface error
occurs.The default is SER_IO_STOP+.

;;KINEMATICS = ma_2 applies as of
Version
TO01E

;;DRIVE_TYPE
 (sr_1.A_1 = SM,

 sr_2.A_1 = SM_CAN)

applies as of
Version
"ECO"

;;INCLUDE exdat applies as of
Version
TO01E

;;INT = PTP
;;INT = LINEAR
;;INT = CIRCULAR

applies as of
Version
TO01E

;;ma_2.INT = PTP
;;ma_2.INT = LINEAR
;;ma_1.INT = CIRCULAR

applies as of
Version
TO01E

;;SER_IO_STOP- applies as of
Version
TO02F

;;SER_IO_STOP+ applies as of
Version
TO02F

 6 PROGRAM DECLARATIONS Flexible Automation

 6 BAPS2 language for the control rho3

PROGRAM DECLARATIONS

MAIN PROGRAM DECLARATION
The program name may have a maximum
length of 8 characters. The first character
must be a letter. The only special character
permitted is the underscore character "_".

MAIN PROGRAM BEGIN-END
The declaration part is followed by the start of
the main program with instruction BEGIN. It
ends with the keyword "PROGRAM_END".

MAIN PROGRAM-END BY HALT
HALT is optional and may occur at several
points in the main program.
Program execution is stopped (e.g. in the
case of decisions IF...THEN...).

EXTERNAL SUBROUTINE CALLS
The names of the external subroutines must
be declared before the keyword "BEGIN".

CALLING EXTERNAL SUBROUTINES
with parameter transfer.

PROGRAM DECLARATION
with parameter transfer.
Can be called as an external subroutine.

PROGRAM dana
.
.
.

applies as of
Version
TO01E

BEGIN
.

PROGRAM_END

applies as of
Version
TO01E

BEGIN
.
HALT
PROGRAM_END

applies as of
Version
TO01E

EXTERNAL: subrout_name
.

subrout_name

applies as of
Version
TO01E

EXTERNAL: subrout_name
 (VALUE INTEGER : sp,ze,
 VALUE REAL : de_z)

subrout_name (3,2,-50)

applies as of
Version
TO01E

PROGRAM subrout_name
(VALUE INTEGER: sp,ze
VALUE REAL: de_z)

applies as of
Version
TO01E

 7SUBROUTINE DECLARATIONSFlexible Automation

 7BAPS2 language for the control rho3

SUBROUTINE DECLARATIONS

SUBROUTINE DECLARATION
The subroutine name may have a maximum
length of 12 characters. The first character
must be a letter. The only special character
permitted is the underscore "_".

SUBROUTINE DECLARATION with parameter�
list. If variable 'aw' is modified in subroutine
SUBROUTINE_NAME, variable 'oh' is un�
changed after the return (see below).

SUBROUTINE DECLARATION with parameter�
list. If variable 'aw' is changed in subroutine
SUBROUTINE_NAME, variable 'oh' has the
same value after the return (see below).

SUBROUTINE CALL
A subroutine call can be performed from the
main program. A subroutine, in turn, can call
another subroutine.

SUBROUTINE CALL
with parameter transfer.

SUBROUTINE-END
This can be used optionally if you wish to quit
the subroutine at various points.

SUBROUTINE subrout_name
BEGIN
.
SUB_END

applies as of
Version
TO01E

SUBROUTINE subrout_name
(VALUE REAL:aw)

BEGIN
SUB_END

applies as of
Version
TO01E

SUBROUTINE subrout_name
(REAL:aw)

BEGIN
SUB_END

applies as of
Version
TO01E

.
subroutine name
.
.

applies as of
Version
TO01E

.
subroutine name (oh)
.
.

applies as of
Version
TO01E

RETURN

applies as of
Version
TO01E

 8 Flexible AutomationSTANDARD CONSTANTS

 8 BAPS2 language for the control rho3

STANDARD CONSTANTS

CLEAR SCREEN CLS
You can clear the PHG display by output of
"CLS".

VERSION
You can scan the version number of the com�
piler in the BAPS program.
The constant is of the type REAL.

WRITE PHG,CLS
applies as of

Version
TO02F

 IF VERSION < 2.31
 THEN WRITE
 'Old compiler version'

applies as of
Version
TO02F

 9Flexible Automation DATA TYPES

 9BAPS2 language for the control rho3

DATA TYPES

Points in world coordinate representation.

Points in joint coordinate representation.

Ditto with kinematic assignment.

Integer values (whole numbers)

Decimal (real) floating point

Binary variables or I/O signals. There are two
states (logical 0 or logical 1).

ASCII characters in accordance with
DIN 66003

Character string, e.g. 'SCHOOL'

This is where the names of the files with exten�
sion DAT are declared. Values can be read
from or written to DAT files. (See FILES I/O.)

Variables of type SEMAPHORE are required
for the EXCLUSIVE statement.

POINT: p_name

JC_POINT: @p_name

applies as of
Version
TO01E

ma_1.POINT: kp_name

ma_2.JC_POINT: @kp_name

applies as of
Version
TO01E

INTEGER: i_var

REAL: r_var

applies as of
Version
TO01E

BINARY: b_var
applies as of

Version
TO01E

CHAR: char

TEXT: message

applies as of
Version
TO01E

FILE: danadat
applies as of

Version
TO01E

SEMAPHORE: sema_var
applies as of

Version
TO01E

 10 POINT DECLARATIONS Flexible Automation

 10 BAPS2 language for the control rho3

POINT DECLARATIONS

DEFine points are points stored in a point file.
They can be influenced in operating mode
'DEFINE', 'TEACH' and by the BAPS program.

DEFine joint coordinate points.
(see above)

Ditto with kinematic assignment.

DEFine world coordinate points via an array
with lower limit and upper limit.

DEFine joint coordinate points via an array
with lower limit and upper limit.

Ditto with kinematic assignment.

DEF POINT: d_pnt
applies as of

Version
TO01E

DEF JC_POINT: @d_jcp
applies as of

Version
TO01E

DEF ma_1.POINT: d_pnt

DEF ma_1.JC_POINT: @d_pnt

applies as of
Version
TO01E

DEF ARRAY [1..6] POINT:ap applies as of
Version
TO01E

DEF ARRAY [1..6]
JC_POINT: @ap

applies as of
Version
TO01E

DEF ARRAY [1..6]
ma_1.POINT: ap

DEF ARRAY [1..6]
ma_2.JC_POINT: @ap

applies as of
Version
TO01E

Flexible Automation 11GLOBAL VARIABLES

 11BAPS2 language for the control rho3

GLOBAL VARIABLES
Global variables permit simple data exchange between several independent BAPS2 user programs
(processes). The underlying idea is that of combining programs operating with the same global vari�
ables to form one program group. One program can export data within this group while the other pro�
grams of this group may only import these data. Any number of such program groups can be created
on the control (restricted only by the available memory space).

Declaration part in the exporting program:
Global variables are declared by adopting the
reserved word PUBLIC in the type declaration of
these variables. The data range for these vari�
ables is reserved in the IRD file. Teach points
(e.g. identified by the keyword DEF) are stored
in the PNT file.

Declaration part in the importing program:
The variables can be accessed by other BAPS
programs if the variables are declared with EX�
TERNAL and the name of the exporting pro�
gram.

Restrictions
The following restrictions must be taken into
consideration when using global data:
1. The exporting program of a program group
must have been compiled before the importing
programs of this group (because of the type
checking of the compiler), i.e. the user must en�
sure that the importing programs are 'more re�
cent' than the exporting program. If this is not
the case, an error message or a warning is is�
sued at the start of the program.
2. In a program, it is not possible to import and
export data simultaneously.
3. Data may be imported only from one pro�
gram.
4. Global data may be exported or imported only
in the declaration part of the main program, and
not in the subroutines.
5. Access to the variables must be prevented by
use of the EXCLUSIVE statement before inter�
ruption in order to guarantee data consistency.
The consistency of simple standard types such
as BINARY, INTEGER, REAL, CHAR is provided
by the operating system.

applies as of
Version
TO02F

Example program

;Exporting program
PROGRAM exp_var

;global data
PUBLIC DEF POINT: start_pos
PUBLIC INTEGER: index
PUBLIC
SEMAPHORE: writeprotect

REAL: mvalue

BEGIN
;BAPS statements
EXCLUSIVE writeprotect
start_pos =POS
index=5
EXCLUSIVE_END
;...
;... further statements
;...
PROGRAM_END

;Importing program
PROGRAM imp_var

;global data
EXTERNAL exp_var: start_pos
EXTERNAL exp_var: index
EXTERNAL exp_var: writepro�
tect

;local data
POINT: end_pos

BEGIN
;BAPS statements
EXCLUSIVE writeprotect
RPT index TIMES

MOVE TO start_pos
MOVE TO end_pos
RPT_END
EXCLUSIVE_END
;
PROGRAM_END

 12 ARRAY DECLARATIONS Flexible Automation

 12 BAPS2 language for the control rho3

ARRAY DECLARATIONS

Arrays are data structures consisting of a fixed number of elements of the same type. The lower and
upper limits are specified in square brackets. The data type is specified after the square brackets.
The array limits are monitored for the following range when declaring arrays of any element type:
[- 8388608... 8388607].

Array of type POINT/JC_POINT

Ditto with kinematic assignment

Array of type CHAR and TEXT

Array of type INTEGER and REAL

Array of type BINARY

Two-dimensional array of type INTEGER

Access to the field components

ARRAY [1..6] POINT: ap

ARRAY [1..6] JC_POINT: @ap

applies as of
Version
TO01E

ARRAY [1..6]
ma_2.POINT: ap

ARRAY [1..6]
ma_1.JC_POINT: @ap

applies as of
Version
TO01E

ARRAY [1..6] CHAR: az

ARRAY [21..36] TEXT: at

applies as of
Version
TO01E

ARRAY [1..6] INTEGER: ai

ARRAY [21..36] REAL: ar

applies as of
Version
TO01E

ARRAY [1..6] BINARY: ab applies as of
Version
TO01E

ARRAY [1..4]
 ARRAY [1..2] INTEGER: a2dimi

a2value = a2dimi [1] [2]

applies as of
Version
TO01E

 13I/O ARRAY DECLARATIONSFlexible Automation

 13BAPS2 language for the control rho3

I/O ARRAY DECLARATIONS

Array of type OUTPUT BINARY

Array of type INPUT BINARY

Array of type OUTPUT INTEGER

Array of type INPUT INTEGER

Array of type OUTPUT REAL

Array of type INPUT REAL

I/O arrays may be declared only in one dimension.

ARRAY [1..2]
OUTPUT BINARY:
(1,32) = o_sen_F1

applies as of
Version
TO01E

ARRAY [11..14]
INPUT BINARY:
(5,6,7,22) = i_sen_F2

applies as of
Version
TO01E

ARRAY [1..3]
OUTPUT INTEGER:
(401,402,403) = oi_sen_F3

applies as of
Version
TO01E

ARRAY [11..13]
INPUT INTEGER:
(401,404,408) = ii_sen_F4

applies as of
Version
TO01E

ARRAY [1..2]
OUTPUT REAL:
(201,202) = or_sen_F5

applies as of
Version
TO01E

ARRAY [11..12]
INPUT REAL:
(201,203) = ir_sen_F6

applies as of
Version
TO01E

 14 CHANNEL DECLARATIONS Flexible Automation

 14 BAPS2 language for the control rho3

CHANNEL DECLARATIONS

The names of the USER INPUTS/OUTPUTS
are declared. The names may not be BAPS
keywords. Entry "BINARY"may be omitted
since BINARY is the default type.
(Permitted channel number: 1..120,
 6xy with high speed inputs)

6 x y

 Number of the Servoboard
 (1..3)
characteristic for probe and
high speed inputs

Number of the high speed
input
 0 = Probe input
1..9 = high speed inputs

Structure of the high speed input number:

The names of the INTEGER USER INPUTS/
OUTPUTS are declared. These are output on
the interface with a width of 8 BITS (signifi�
cance 0-255).
(Permitted channel number: 401..408)

The names of the REAL USER INPUTS/OUT�
PUTS are declared.
(Permitted channel number: 201..299)

The names of the belts are declared.
(Permitted channel number: 501..508)

INPUT BINARY: 2 = gr_force

OUTPUT BINARY: 9 = magnet

applies as of
Version
TO01E

INPUT INTEGER:
401 = decade

OUTPUT INTEGER:
403 = lcd_display

applies as of
Version
TO01E

INPUT REAL: 201 = poti_1

OUTPUT REAL:203 = v_pres�
sure

applies as of
Version
TO01E

BELT: 501 = belt1_ma1

ma_2.BELT: 502 = belt2_ma2

applies as of
Version
TO01E

Flexible Automation 15CHANNEL DECLARATIONS

 15BAPS2 language for the control rho3

Asynchronous inputs:
The declaration of asynchronous inputs is made by adding an offset of 1000 to the channel number.

The names of the asynchronous INPUTS are
declared. The names may not be BAPS key�
words. Entry "BINARY" may be omitted since
BINARY is the default type.
(Permitted channel number: 1001..1020)

The names of the integer-asynchronous IN�
PUTS are declared.
(Permitted channel number: 1401..1408)

The names of the real-asynchronous INPUTS
are declared.
(Permitted channel number: 1201..1299)

INPUT BINARY:1002 = gr_force
applies as of

Version
TO01E

INPUT INTEGER:1401= decade
applies as of

Version
TO01E

INPUT REAL:1201= poti_1
applies as of

Version
TO01E

 16 Flexible AutomationPROGRAM FLOW CONTROL

 16 BAPS2 language for the control rho3

PROGRAM FLOW CONTROL

Program execution is stopped for the specified
period. The constant (5.5) indicates the time in
seconds.

A variable may also be used instead of a con�
stant. This variable must have been declared
beforehand as a REAL or INTEGER variable.
This variable must be assigned a value before
it is used.

WAIT for a condition to occur. (Only scanning
inputs is permitted in the condition.)

WAIT for a condition to occur with a time limit.
If the time has elapsed, the instruction ERROR
statement1 is executed. If the condition is ful�
filled in the max. time, the error is skipped and
the next BAPS instruction is executed.

Program execution is stopped. The program is
continued�with�the�interface�signal �RC-
START"

A fixed number of program runs is executed
between the two instructions.

A fixed number of program runs is executed
between the two instructions.

CONDITIONAL STATEMENT
If the condition is fulfilled, the control executes
statement 1. If the condition is not fulfilled,
statement 2 is executed (after ELSE).

WAIT 5.5
applies as of

Version
TO01E

REAL: dwell_time
dwell_time = 5.5

WAIT dwell_time

applies as of
Version
TO01E

INPUT: 4 = part_there
WAIT UNTIL part_there = 1

applies as of
Version
TO01E

INPUT: 5 = sig
WAIT UNTIL sig = 0
MAX_TIME = 5.6
ERROR statement1

 applies as of
Version
TO01E

PAUSE
applies as of

Version
TO01E

REPEAT 5 TIMES
.
.
REPEAT_END

applies as of
Version
TO01E

INTEGER: number
 number = 5

REPEAT number TIMES ...
REPEAT_END

applies as of
Version
TO01E

IF condition
THEN statement1
ELSE statement2

applies as of
Version
TO01E

Flexible Automation 17PROGRAM FLOW CONTROL

 17BAPS2 language for the control rho3

BEGIN ... END compound
Several statements can be combined by
means of compound statements at points at
which only one single statement may occur.

It is possible to jump to labels within main pro�
grams or subroutines. Forward and backward
jumps are possible.

Using the branch statement "CASE", it is pos�
sible to implement a selection from several
alternatives. Nested "IF - THEN " scans can
thus be avoided and the program execution
time can be shortened.

IF in1 = 1 THEN
BEGIN
 out36 = 0
 out01 = 1
.
END

ELSE BEGIN
.
END

applies as of
Version
TO01E

JUMP label_1
.
.

label_1:

applies as of
Version
TO01E

INTEGER: magnitude,offset
BEGIN
magnitude=0
offset=0

 READ magnitude
 CASE magnitude
 EQUAL 9,10 : offset=0
 EQUAL 11,12 : offset=1
 EQUAL 13 : offset=2
 DEFAULT offset=5
 CASE_END
.
.

PROGRAM_END

applies as of
Version
TO03B

Flexible Automation 18 LOGIC/ARITHMETIC OPERATIONS

 18 BAPS2 language for the control rho3

LOGIC - ARITHMETIC OPERATIONS

Arithmetic operations
(addition,
subtraction,
multiplication,
division)

Standard functions
 (Sine,
cosine)

Standard functions

 (arc tangent)

Standard functions

 (x�)

Arithmetic operations
 (Modulo calculation corresponds to: dividing
a number and using only the remainder)

Logic operations

Comparison operations
(less than, greater than,
equal to or less than, equal to or greater than
not equal to,
equal to)

+
-
*
/

applies as of
Version
TO01E

SIN

COS

applies as of
Version
TO01E

ATAN
applies as of

Version
TO01E

SQRT
applies as of

Version
TO01E

MOD
applies as of

Version
TO01E

AND
OR
NOT

applies as of
Version
TO01E

< , >
<= , >=
<>
=

applies as of
Version
TO01E

 19VALUE ASSIGNMENTSFlexible Automation

 19BAPS2 language for the control rho3

VALUE ASSIGNMENTS

An assignment assigns a new value to a vari�
able.
This value must have a type compatible with
the variable type.

POSITION ASSIGNMENT.
Complete value assignment of a world and
joint coordinate point. The number of compo�
nents is equal to the number of axes of the
kinematic.

Value assignment of a point via variables.

AXIS ASSIGNMENT
The axis name is used for the component val�
ue assignment.

The value assignment can be used for all data
types (e.g. REAL, INTEGER, etc.) and for all
standard variables (e.g. V_PTP, A, VFACTOR,
AFACTOR etc.).

CONSTANTS.
Constants are defined before the variables of
a program.

variable = expression
applies as of

Version
TO01E

p1 = (0,0,-50.123,0)

@p1 = @(0,0,-19.4,0)

applies as of
Version
TO01E

REAL: z_value

z_value = -50.0
 p1 = (0,0,z_value,0)

applies as of
Version
TO01E

z_axis.Z_C = 31.2

p1 = (0,0,z_axis.Z_C,0)

applies as of
Version
TO01E

INTEGER: i

i = 0
i = i+1

applies as of
Version
TO01E

CONST:
 yellow = 0, white = 1,
 blue = 4, red = 3
INTEGER : color

applies as of
Version
TO03B

 20 STANDARD FUNCTIONS Flexible Automation

 20 BAPS2 language for the control rho3

STANDARD FUNCTIONS

Truncating the positions after the decimal
point with assignment of an INTEGER number
or varible or REAL number or variable.

Absolute value generation of INTEGER or
REAL variables or numbers.

Assignment of a REAL number or variable to
an INTEGER or REAL variable with rounding.
(> 0.5 is rounded up,
< = 0.5 is rounded down).

Standard function ORD converts an ASCII
character to an INTEGER value
(in this example:
varo1 = 97).

ORD with arrays
(in this example:
txt[2] = 'R'
varo2 = 82).

ORD with character
(in this example:
varo3 = 97).

Standard function CHR converts an INTEGER
value to an ASCII character. The displayable
character depends on the character set used
(in this example: varc1 = 'a').

The value range of CHR (X) should be be�
tween 0 and 255. No range check is con�
ducted. The function argument is converted
as follows internally for values outside this
range:
X = (X MOD 256)
(in this example: c_varc2 = 'a')

INTEGER: i1
REAL: r1

r1 = TRUNC (12.58)
i1 = TRUNC (1.32)

applies as of
Version
TO01E

INTEGER: i1, it
REAL: r1, rt

rt = ABS (r1)
rt = ABS (i1)
rt = ABS (i1)

applies as of
Version
TO01E

REAL: r1
INTEGER: i1

r1 = ROUND (10.51)
i1 = ROUND (1.32)

applies as of
Version
TO01E

INTEGER: varo1

varo1 = ORD ('a')

applies as of
Version
TO02A

INTEGER: varo2, varo3
CHAR: c_var
ARRAY[1..8] CHAR: txt

txt = 'pRima___'
varo2 = ORD (txt [2])

c_var = 'a'
varo3 = ORD (c_var)

applies as of
Version
TO02A

INTEGER: varc1

varc1 = CHR (97)
varc1 = CHR (80 + 17)

applies as of
Version
TO02A

CHAR: c_varc2
ARRAY[1..3] INTEGER: ain�
teger

ainteger [2] = 97

c_varc2 = CHR(ainteger[2])

applies as of
Version
TO02A

Flexible Automation 21STANDARD FUNCTIONS

 21BAPS2 language for the control rho3

The standard procedure INT_ASC converts
an integer number to an array of characters.
Note:
The format is right justified with leading
blanks.
If an error is detected during conversion pro�
cess, the 'character array' remains unchanged
and the corresponding error code is returned.

-------- PRESET --------
int_number = number to be converted

(only type INTEGER permitted
| int_number | < =2147483647)

---- RESULT ACKNOWLEGMENT ---
ascii_array = Result array of

Type ARRAY [] char
(The destination area is initialized
with blanks before conversion)

-------- PRESET --------
index_ca = Start index in the character array

-------- PRESET --------
length_char = Maximum number of charac

ters reserved for the number to be
converted

---- RESULT ACKNOWLEDGMENT ---
error_rue = Error number output

INTEGER: int_number
INTEGER: index_ca
INTEGER: length_char
INTEGER: error_rue
ARRAY[1..10]

CHAR: ascii_array

int_number = -1234
index_ca = 1
length_char = 5

INT_ASC
(int_number,
 ascii_array,
 index_ca,
 length_char,
 error_rue)

IF
error_rue <> 0

THEN
WRITE 'error in
INTEGER-ASCII conver�

sion'
ELSE

WRITE ascii_array

applies as of
Version
TO02A

 0

-1

-2

-3

-4

No errors

Start index outside array limits

Reserved length too small

Range transgression (value too
big)

-5

-6 Array length = 0

End index (start index + length)
outside array limits

Array length < 0

 22 STANDARD FUNCTIONS Flexible Automation

 22 BAPS2 language for the control rho3

The standard procedure ASC_INT converts
an array of characters to an integer.
The procedure reads in characters as of the
start position until:
- a character which is not a digit is detected
- the maximum number of characters has
 been read
- the end of the character array is reached

-------- PRESET --------
ascii_array = array of type ARRAY [] char

to be converted

---- RESULT ACKNOWLEDGMENT---
integer_number = converted number

(only type INTEGER permitted)

-------- PRESET --------
index_ca = Position in the array as of which
 the number is to be read

-------- PRESET --------
length_char = Maximum number of

characters to be read

---- RESULT ACKNOWLEDGMENT----
error_rue = Error number output

INTEGER: int_number
INTEGER: index_ca
INTEGER: length_char
INTEGER: error_rue
ARRAY [1..10]

CHAR: ascii_array

ascii_array = 'AaBc'
index_ca = 1
length_char = 5

ASC_INT
(ascii_array,
 int_number,

 index_ca,
 length_char,
 error_rue)

IF
error_rue <> 0

THEN
WRITE 'error in
ASCII-INTEGER conver
sion'

ELSE
WRITE int_number

applies as of
Version
TO02A

 0

-1

-2

-3

-4

No errors

Start index outside the array limits

Range transgression (value too
high)

-5

-6 Array length = 0

End index (start index + length) lies
outside the array limits

Array length < 0

-7 Character string does not start
with a number or sign

Flexible Automation 23STANDARD FUNCTIONS

 23BAPS2 language for the control rho3

Conversion from world coordinates to joint
coordinates.

Conversion from joint coordinates to world
coordinates.

Global passing radius.
"R" acts in the case of LINEAR interpolation
(acts kinematic-specifically)

Statement-specific passing radius
"R" acts in the case of LINEAR interpolation
(acts kinematic-specifically)

Global passing factor
"R_PTP" acts in the case of PTP interpolation
(acts kinematic-specifically)

R_PTP is multiplied with the value of P213

Statement-specific passing factor.
"R_PTP" acts in the case of PTP interpolation
(acts kinematic-specifically)

If R = 0 or R_PTP = 0 is programmed, Spatial passing movement is deactivated.

@pa = JC (ph)

@p1 = JC (22) + @p3

applies as of
Version
TO01E

pos_a = WC (@pal)

pos_1 = p3 + WC (@p4)

applies as of
Version
TO01E

R = 50

MOVE LINEAR TO p1

applies as of
Version
TO02F

MOVE LINEAR WITH R= 20
TO p1

applies as of
Version
TO02F

R_PTP= 1.4
;(or R_PTP=140%)

MOVE PTP VIA p2

applies as of
Version
TO02F

R_PTP= 1.4
;(or R_PTP=140%)

MOVE PTP WITH
R_PTP =0.5 VIA p2

applies as of
Version
TO02F

 24 STANDARD FUNCTIONS Flexible Automation

 24 BAPS2 language for the control rho3

Standard function CONDITION permits:
1a. The status of an interface to be deter�
mined.
V24_1 ... V24_4,PHG,TTY are supported
Function value:
 0 no errors
-1 Interface not found
-2 Interface blocked
-3 Timeout
-4 Parity error
-5 Overrun error
-6 Framing error
-7 Interface error
-8 Wrong string length
-9 Protocol error
-10 Illegal REAL value
-11 Point not defined
1b. The status of a file to be determined.
CONDITION (filename) checks, if the specified
file exists.
Function value:
0 specified file does not exist
1 specified file exists

2. To get the status of processes.
The name of the process must be declared
with EXTERNAL 'processname'.
Function value:
 -1 process does not exist
 0 process is holding
 1 process is running
 2 process is waiting
 3 process is ready
 11 1 sub process of main pro-

cess procname is active
 12 2 subprocesses are active
 13 3 sub processes are active
10+n n sub proc. active (n=1..90)
>100 process error

error code=func.-value -100

3. To get the status of system signals (in�
puts and outputs).
There are two ways possible:
1. The address of the signal to be test can be
used directly as parameter. Example:
'Ox.y', 'Ix.y '
2. The address of the signal is a CONST (of
type text). Same for an input byte.
Function value:
0/1 status of a signal "0" or "1"
0..255 status of a byte
-1 invalid signal group
-2 invalid bit address
-3 invalid character
-4 invalid signal address

PROGRAM io_test

EXTERNAL:procname
INTEGER: index,number,

status
FILE: fina

CONST:
textconst = 'I85.7'
txbyconst= 'I13'

BEGIN

number=0
READ V24_1, index
IF CONDITION(V24_1)
 < 0 THEN
WRITE 'Read error'

status=
 CONDITION(fina)

status=
 CONDITION(procname)

status=
CONDITION('I0.0')

status=
CONDITION('I0')

status=
CONDITION(textconst)

status=
CONDITION(txbyconst)

PROGRAM_END

applies as of
Version
TO02F

applies as of
Version
TO04J

applies as of
Version
TO04J

Flexible Automation 25STANDARD FUNCTIONS

 25BAPS2 language for the control rho3

The BAPS command ASSIGN makes it pos�
sible to change the names of files or to
change the assignment of standard channels
(V24_1..V24_4, SER_1..SER_4, PHG) at the
runtime of a BAPS program.

Clears display of PHG

Read filename from the PHG
Assign the contents of filename to filevar. Fol�
lowing file I/O uses the file specified by filevar.

Open file for read
Read a line from the file and writes it on the
PHG, then close the file.

note:
when ASSIGN is used with files, it is neces�
sary to close the files before using ASSIGN
with these files

assigns channel PHG to the content of chan�
nel_var (V24_2), writes one_line to channel
V24_2 and assigns PHG back to channel PHG

note:
it is important to write the character '.' as li�
mitation of channel names. If you omit the
point '.', assignment is done to a filename (ex�
tension DAT), e.g. PHG.DAT

PROGRAM progname

FILE:filevar
TEXT:filename,one_line,

 channel_var

BEGIN
WRITE PHG,CLS
WRITE PHG,'file name:'
READ PHG, filename
ASSIGNfilevar,filename

READ_BEGIN filevar
READ filevar,one_line
WRITE one_line
CLOSE filevar

channel_var = 'V24_2.'
ASSIGN PHG, channel_var
WRITE PHG, one_line
ASSIGN PHG,'PHG.'

PROGRAM_END

applies as of
Version
TO04J

 26 MOVEMENT INSTRUCTIONS Flexible Automation

 26 BAPS2 language for the control rho3

MOVEMENT INSTRUCTIONS

REFERENCE POINT TRAVEL
Those axes that are to travel simultaneously to
the reference point are specified in brackets.
This should be the first command used in the
INIT program.
The default kinematic is moved.

REFERENCE POINT TRAVEL
with kinematic entry

MOVE ABSOLUTE
This movement instruction traverses the robot
in world or joint coordinates (default kinemat�
ic).

MOVE ABSOLUTE
with kinematic entry.

As for Move absolute, but the position is com�
puted beforehand and, only then, the system
moves.

Ditto with kinematic entry.

MOVE INCREMENTAL
The robot can be advanced by a distance (in
mm) or an angular distance (in degrees) from
the current position
(default kinematic).

Ditto with kinematic entries

As for Move incremental, but the position is
computed beforehand, and only then, the sys�
tem moves.
(default kinematic)

REF_PNT (3)

REF_PNT (1,2,3,...)

applies as of
Version
TO01E

REF_PNT ma_1 (3)

REF_PNT ma_2 (1,2,3,...)

applies as of
Version
TO01E

MOVE fetchpos

MOVE @fetchpos

applies as of
Version
TO01E

MOVE ma_2 fetchpos

MOVE ma_1 @fetchpos

applies as of
Version
TO01E

MOVE fetch + up

MOVE @fetch + @up

applies as of
Version
TO01E

MOVE ma_2
fetch + up

MOVE ma_1
@fetch + @up

applies as of
Version
TO01E

MOVE_REL down

MOVE_REL @down

applies as of
Version
TO01E

MOVE_REL ma_2 down

MOVE_REL ma_2 @down

applies as of
Version
TO01E

MOVE_REL
down + distance_z

MOVE_REL
@down + @distance_z

applies as of
Version
TO01E

Flexible Automation 27MOVEMENT INSTRUCTIONS

 27BAPS2 language for the control rho3

Ditto with kinematic entries

Move to points EXACT (with brief axis stop).

Move EXACT to several points (with brief axis
stop).

Move to points WITHOUT EXACT HALT.

ABORT MOVEMENT
Movement occurs in direction hole_5 until
hole_5 is reached or until condition
(FORCE=1) is fulfilled.

ABORT MOVEMENT
Movement occurs in direction hole_5 until the
condition (FORCE=1) is fulfilled. If the destina�
tion position is reached and the condition is
not fulfilled, the instruction after ERROR is ex�
ecuted

MOVE POINT-TO-POINT
in joint or world coordinates. The control
moves synchronously PTP, i.e. all axes start
and finish at the programmed point at the
same instant.

LINEAR INTERPOLATION
The points are connected by an exact straight
line (path), if the working area permits.

CIRCULAR INTERPOLATION
Circular interpolation permits movement in
circular arcs. One pair of points is always re�
quired so that the control can compute the
circular arc size.

MOVE_REL ma_2
down + distance_z

MOVE_REL ma_2
@down + @distance_z

applies as of
Version
TO01E

MOVE TO pos1

MOVE_REL EXACT stre

applies as of
Version
TO01E

MOVE p1,p2,p3 applies as of
Version
TO01E

MOVE VIA @palpos

MOVE_REL APPROX home

applies as of
Version
TO01E

MOVE UNTIL force = 1

TO hole_5

applies as of
Version
TO01E

MOVE UNTIL force = 1
ERROR pause
TO hole_5

applies as of
Version
TO01E

MOVE PTP @pos_door

MOVE_REL PTP palpos

applies as of
Version
TO01E

MOVE LINEAR TO a_z

MOVE_REL LINEAR
APPROX up

applies as of
Version
TO01E

MOVE CIRCULAR
(hi_put,end_put)

MOVE_REL CIRCULAR
(@pos1,@pos2)

applies as of
Version
TO01E

 28 ACTUAL - MEASUREMENT/POSITION Flexible Automation

 28 BAPS2 language for the control rho3

ACTUAL POSITION

ACTUAL POSITION
The current position of the robot can be read
with the aid of POS, and it is thus available to
the program for further evaluation (default ki�
nematic)

ACTUAL POSITION
Ditto with kinematic entries

The actual position can also be read in JC
(joint coordinates).
(Default kinematic)

The actual position can also be read in JC
with kinematic entries.

posi = POS
IF posi.X_C > 300
THEN posi.X_C = 300
MOVE TO posi

applies as of
Version
TO01E

posi = ma_2.POS
IF posi.X_C > 300
THEN posi.X_C = 300
MOVE TO posi

applies as of
Version
TO01E

@current = @POS applies as of
Version
TO01E

@current = ma_1.@POS applies as of
Version
TO01E

Flexible Automation 29ACTUAL - MEASUREMENT POSITION

 29BAPS2 language for the control rho3

MEASUREMENT POSITION

The component @MPOS contains the mea�
surement position which can be determined
with the high-speed inputs on the servo card
with high accuracy. @MPOS acts only in the
joint coordinate system but may be converted
with the standard function WC.

@p1 = @MPOS

@p1 = ma_1.@MPOS
 p1 = WC(ma_1.@MPOS)

applies as of
Version
TO02A

 30 SPEEDS Flexible Automation

 30 BAPS2 language for the control rho3

SPEEDS

POINT-TO-POINT SPEED
The global PTP speed is written in one block
on its own. It acts until it is overwritten by
another speed (acts on the default kinematic).

Ditto with kinematic entries.
Acts only on the specified kinematic

PATH SPEED
The global path speed acts on linear and cir�
cular movements of the default kinematic.

Ditto with kinematic entries

PATH ACCELERATION
The path acceleration acts only on linear and
circular movements and not on PTP move�
ments.

Ditto with kinematic entries

LOCAL PTP SPEED
The local PTP speed acts only in a MOVE (or
Move_REL.) block. After this the global speed
becomes active again.

Ditto with kinematic entries

LOCAL PATH SPEED
The local path speed acts only in this block. It
must be entered in mm/s.

V_PTP = 80%

V_PTP = 0.8

applies as of
Version
TO01E

ma_1.V_PTP = 80%

ma_2.V_PTP = 0.8

applies as of
Version
TO01E

V = 800 applies as of
Version
TO01E

ma_1.V = 800 applies as of
Version
TO01E

A = 765 applies as of
Version
TO01E

ma_1.A = 765 applies as of
Version
TO01E

MOVE PTP WITH
V_PTP = 30%
TO home

applies as of
Version
TO01E

MOVE ma_2 PTP WITH
V_PTP = 30%
TO home

applies as of
Version
TO01E

MOVE LINEAR WITH
V = 2000
TO edge

applies as of
Version
TO01E

 31Flexible Automation SPEEDS

 31BAPS2 language for the control rho3

Ditto with kinematic entries

Local point-to-point speed
(block-by-block) without VFACTOR active
(i.e. VFACTOR = 100%).

Ditto with kinematic entries.

Local path speed (block-by-block) without
effect of the VFACTOR (i.e. VFACTOR =
100%).

Ditto with kinematic entries.

PATH ACCELERATION without AFACTOR ac�
tive (= 100%). This statement is also possible
only locally in the MOVE instruction for LIN�
EAR and CIRCULAR (as VFIX above).

TIME INPUT (in seconds)
The next position is to be approached within a
specific period. (Only local programming pos�
sible.)

Ditto with kinematic entries.

MOVE ma_2 LINEAR WITH
V = 2000
TO edge

applies as of
Version
TO01E

MOVE PTP WITH
VFIX_PTP = 0.8
TO @pos_up

applies as of
Version
TO01E

MOVE ma_1 PTP WITH
VFIX_PTP = 0.8
TO @pos_up

applies as of
Version
TO01E

MOVE LINEAR WITH
VFIX = 300
VIA pal_pos_down

applies as of
Version
TO01E

MOVE ma_2 LINEAR
WITH VFIX = 300
VIA pal_pos_down

applies as of
Version
TO01E

AFIX = 300 applies as of
Version
TO01E

MOVE WITH
T = 2.35
TO destpos

applies as of
Version
TO01E

MOVE ma_2 WITH
T = 2.35
TO destpos

applies as of
Version
TO01E

 32 V / A / D FACTORS Flexible Automation

 32 BAPS2 language for the control rho3

V / A / D FACTORS

SPEED-FACTOR
The PTP speed and the tool path feedrate can
be influenced with the VFACTOR.
The VFACTOR can also be modified via the
PHG (acts on the default kinematic).

Ditto with kinematic entries.
Acts only on the specified kinematic.

ACCELERATION and DECELARATION
These factors influence the tool path accelera�
tions and the stored PTP axis accelerations.
(Only above the slope point in the case of
ramp slope.)

Ditto with kinematic entries.
Acts only on the specified kinematic.

VFACTOR = 100%

VFACTOR = 1

applies as of
Version
TO01E

ma_1.VFACTOR = 100%

ma_2.VFACTOR = 1

applies as of
Version
TO01E

AFACTOR = 100%
AFACTOR = 1
DFACTOR = 100%
DFACTOR = 1

applies as of
Version
TO01E

ma_1.AFACTOR = 100%

ma_2.DFACTOR = 1

applies as of
Version
TO01E

Flexible Automation 33SLOPE MODES

 33BAPS2 language for the control rho3

SLOPE MODES

Time input without VFACTOR active (=100%).

Ditto with kinematic entries

Global switchover to the program slope.
No downslope (setpoint = 0 V) is executed
between several 'MOVE VIA' blocks.
A 'MOVE TO' statement executes a down�
slope (acts on the default kinematic).

Ditto. If a kinematic other than the default ki�
nematic is to be switched over, this must be
set beforehand as the default kinematic.

Global switchover to the block slope. A down�
slope (setpoint = 0 V) is also executed bet-
ween 'MOVE VIA' blocks.

Ditto with kinematic entry (see above).
See rho3 machine parameters

MOVE WITH
TFIX = 2.35
TO destpos

applies as of
Version
TO01E

MOVE ma_2 WITH
TFIX = 2.35
TO destpos

applies as of
Version
TO01E

PROGR_SLOPE
applies as of

Version
TO01E

;; KINEMATICS = ma_2

PROGR_SLOPE

applies as of
Version
TO01E

BLOCK_SLOPE
applies as of

Version
TO01E

;; KINEMATICS = ma_2

BLOCK_SLOPE

applies as of
Version
TO01E

 34 BELT SYNCHRONIZATION Flexible Automation

 34 BAPS2 language for the control rho3

BELT SYNCHRONIZATION

The synchronization statements ensure that the controlled machine assumes the correct position and
orientation with respect to the belt. The belt may move forwards and backwards, change its speed or
stop as required.
The belt must be a �straight line". This line may be arbitrarily positioned in space.

DECLARATION OF THE BELT VARIABLES.
Several belts can be declared for a kinematic.
The belt names must be different.
The same belt can be used for several kine�
matics.

Belt counter is reset. Reseting may be
dependent upon the current value of the belt
variables themselves or upon a condition
(see SPC_FCT 28).

Instruction SYNCHRON activates belt synchro�
nization. From this point on, the programmed
movements are synchronized with the belt as
regards position and orientation. The kinemat�
ic entry is optional.

Instruction SYNCHRON_END deactivates belt
synchronization. The kinematic entry is option�
al; if it is omitted, the default kinematic is
used.

ma_1.BELT:
501 = belt_kin1

applies as of
Version
TO01E

SYNC
belt_kin1 >= 10.0

SYNC
BELT, light = 1

applies as of
Version
TO01E

SYNCHRON
ma_1 belt_kin1

applies as of
Version
TO01E

SYNCHRON_END
ma_1 belt_kin1

applies as of
Version
TO01E

Flexible Automation 35WORKING AREA LIMITS

 35BAPS2 language for the control rho3

WORKING AREA LIMITS

Minimum and maximum values for working
area limits. These values are always world
coordinate positions.

Cancellation of the working area limits.

Working area limits with kinematic entries.

LIMIT_MIN =
(x_value,...,u_value)

LIMIT_MAX =
(x_value,....,u_value)

LIMIT_OFF

applies as of
Version
TO01E

ma_1.LIMIT_MIN =
(x_value,...,u_value)

ma_1.LIMIT_MAX =
(x_value,....,u_value)

LIMIT_OFF ma_1

applies as of
Version
TO01E

Flexible Automation 36 WRITE / READ INTERFACES

 36 BAPS2 language for the control rho3

WRITE / READ INTERFACES

The WRITE/READ operations in BAPS2 are performed on so-called logical devices to which specif�
ic transmission protocols are assigned by default and by machine parameters. Assignment to a
physical interface is also performed via machine parameters. This permits flexible use of the inter�
faces on the control.

SERIAL INTERFACE.
Permanently assigned to the hand-held pro�
gramming unit PHG3.

SERIAL INTERFACES.
See Default via PHG/machine parameters for
the logical and physical assignment.

Various communication protocols are available for communication. These can be selected via ma�
chine parameter (default) or via mode 9.1 using the PHG.

P.-
No.

Protocol structure Read
Echo

1 a
1 b

<DATA> followed by <CR><LF>
<DATA> followed by<CR> oder <LF>

yes

2 <DATA> yes

3 <SOH><STX><DATA><ETX>
followed by
<SOH><STX><CR><LF><ETX>

no

4 <SOH><STX><DATA><ETX> no

5 <DATA> no

6 PHG - Protocol yes

7 rho1 / rho2 compatible with P.No. 3 no

8 Data protection layer ot the Siemens-Pro�
tocol 3964/R

no

1a = Data-Input
1b = Data-Output

PHG

applies as of
Version
TO01E

V24_1

V24_2

V24_3

V24_4

applies as of
Version
TO01E

 37WRITE / READ INTERFACESFlexible Automation

 37BAPS2 language for the control rho3

It is possible to write variables and texts from
the BAPS program to the interface V24_1,
V24_2, V24_3, V24_4 and PHG.

It is possible to write variables, texts and one-
dimensional arrays from the BAPS program to
the interface V24_1, V24_2, V24_3, V24_4 and
PHG.
Note:
If a BAPS program has to communicate via an
interface which is used by ROPS3, the
ROPS3-rho3 communication has to be deac�
tivated before.

Clear PHG display
<- corresponds to the control character of
ESC
(See chapter STANDARD CONSTANTS "CLS")

Clear to end of line on the PHG display
(<- corresponds to the control character of
ESC)

Position the cursor to line and column on the
PHG display. (The H is required as the end
character for the column)
(<- corresponds to control character of ESC)

It is possible to read variables and texts from
the interfaces V24_1, V24_2, V24_3, V24_4
and PHG, starting from the BAPS program.

WRITE V24_1,POS

WRITE PHG, 'Number', i

applies as of
Version
TO01E

ARRAY[1..70] CHAR:
F1_CHAR

WRITE F1_CHAR

ARRAY[1..4]
ARRAY[1..50] CHAR:

F2_CHAR

WRITE F2_CHAR [1]

applies as of
Version
TO02C

WRITE PHG, '<-[J', ...
applies as of

Version
TO01E

WRITE PHG, '<-[K', ...
applies as of

Version
TO01E

WRITE PHG,
'<-[line;columnH', ...

applies as of
Version
TO01E

READ M

READ V24_2, M

applies as of
Version
TO01E

 38 FILES - I/O (READ) Flexible Automation

 38 BAPS2 language for the control rho3

FILES - I/O (READ)

Type declaration for ASCII files which are to
permit read and/or write access within a BAPS
program.
(E.g. in this case, access to FINA.DAT)

Positioning the READ pointer to the start of a
defined line of the given file (in this case, the
fifth line in file FINA.DAT). The pointer is posi�
tioned to line 1 if the line entry is omitted.

The first value is read from the file (in this
case: FINA.DAT) as of the positioned line, and
is stored into the variable (e.g. OTTO). The
invisible READ pointer is advanced by one
position.

This function permits interrogation of whether
the file end has been reached
(e.g. FINA.DAT).

Type declaration of BINARY-files which are to
permit read and/or write access within a BAPS
program.
(E.g. in this case, access to FINA.BIN)

FILE: fina
applies as of

Version
TO01E

FILE: fina

READ_BEGIN
fina, 5

applies as of
Version
TO01E

FILE: fina
INTEGER: otto

READ fina, otto

applies as of
Version
TO01E

FILE: fina

IF
END_OF_FILE (fina)

THEN JUMP finished

finished: ...

applies as of
Version
TO01E

BNR_FILE: fina
applies as of

Version
TO05G

 39FILES - I/O (WRITE)Flexible Automation

 39BAPS2 language for the control rho3

FILES - I/O (WRITE)

The write pointer is positioned to the start of a
specific line in the specified file
(e.g. danadat.DAT).

note:
old data, existing behind the declared line
number are deleted

The contents of the variables are written to the
specified file. The write position is the position
to which the write pointer is pointing.

note:
data behind the write pointer are deleted

The write pointer is set to the end of the file.
The file is extended (appended) at the end
with the next WRITE instruction.

A DAT file must always be closed after writing
before it can be read. (The DAT file is closed
automatically at the end of the program).

FILE: danadat
INTEGER: number

number = 1

WRITE_BEGIN
danadat, 1

WRITE_BEGIN
danadat, number

applies as of
Version
TO01E

FILE: danadat
REAL: rslt
TEXT: display

display = 'the result:'

WRITE danadat,
display, rslt

applies as of
Version
TO01E

FILE: danadat

WRITE_END
danadat

applies as of
Version
TO01E

FILE: danadat

CLOSE danadat

applies as of
Version
TO01E

 40 PARALLEL PROCESSES Flexible Automation

 40 BAPS2 language for the control rho3

PARALLEL PROCESSES

(no synchronized end with par�
allel processes)

External program with name must be defined
in the declaration part.

The main program (HP) and external program
(in this case: GRIPPER) are run in parallel.

A priority scale from 100 (highest) to 150 (low�
est) can be assigned.

Parallel program Gripper is stopped and only
the main program continues to run.

(synchronized end in the case of parallel pro�
cesses)

1st process

2nd process

3rd process
run simultaneously.

When all processes are finished, the system
continues in the program after PARAL�
LEL_END.

If it is intended to access exclusively to com�
mon resources (e.g. printers), this can be
achieved with the Exclusive statement. The
semaphore variable must have been declared
beforehand in the declaration part and acts
globally in the operating system, i.e. an inter�
lock function can be performed by all pro�
grams.
If another parallel-running process is using
the semaphore, the second process remains
in "wait" state until the semaphore is released
again.
EXCLUSIVE - uses the semaphore
EXCLUSIVE_END - releases the semaphore
If the parallel running process is not using the
semaphore, the interlock has no effect.

applies as of
Version
TO01E

PARALLEL PROCESSES (EXTERNAL)
..
EXTERNAL:gripper

.
START gripper
.
START gripper PRIO=100
.
.
STOP gripper
.
.

PARALLEL PROCESSES (INTERNAL)
.
..
PARALLEL

MOVE pal_pos_1
I = 5
.
. .

ALSO
MOVE ma_2 TO pal_corner_I
.
.
ALSO

.

. .
PARALLEL_END
.
.
MOVE TO home

SEMAPHORE:sema_var

EXCLUSIVE
sema_var
.

EXCLUSIVE_END

applies as of
Version
TO01E

 41SPECIAL FUNCTIONSFlexible Automation

 41BAPS2 language for the control rho3

SPECIAL FUNCTIONS

Functions to which no BAPS keywords are
assigned are declared as SPECIAL FUNC�
TIONS. All special functions are listed in order
of number below.

Exact-position switching of digital signals on
the path with rate time.
Up to 8 channels can be used for the function.

Exact-position output of process parameters
output with rate time.
SPC2 includes 8 functions for output of 8 bit-
wide outputs (value range 0..255) on the inter�
face to the control or any decimal value via a
free analog value output on the servo card.

Special function 3 sets the internal machine
position to the values specified in the point
variables @p_name.

If no kinematic is entered when declaring the
special function, the point relates to the de�
fault kinematic.

The special function must be declared sepa�
rately for each kinematic to which it is in�
tended to assign machine positions.

IMPORTANT :

The kinematic selected with the variable kin_no and kinematic defined in the declaration must be the
same.
The operating system of the rho3 control does not check for correct assignment.

CAUTION ! (Special function 3) :

Note that if machine positions are activated due to incorrect programming, the controller will no longer
'know' where the machine actually is.

SPC_FCT:
applies as of

Version
TO01E

1 = eal
(VALUE INTEGER: eal_no
VALUE INTEGER: kin_no
VALUE INTEGER: coordno
VALUE REAL: outp_pos
VALUE REAL: para_outp
VALUE INTEGER: rate time)

applies as of
Version
TO01E

2 = ppa
(VALUE INTEGER: ppa_no
VALUE INTEGER: kin_no
VALUE INTEGER: coord_no
VALUE REAL: outp_pos
VALUE REAL: param
VALUE INTEGER: rate)

applies as of
Version
TO01E

 3 = mach_pos
(VALUE INTEGER : kin_no
kin_name.JC_POINT :

@p_name)

3 = mach_pos
(VALUE INTEGER : kin_no

JC_POINT : @p_name)

applies as of
Version
TO03D

 42 SPECIAL FUNCTIONS Flexible Automation

 42 BAPS2 language for the control rho3

This special function permits to use rho3 sys�
tem functions in a BAPS2 program.
command = name of special function for

use in BAPS
com = selects the system function

1= COMPILE (QLL-file)
2= COPY (any file)
3= DELETE (any file)
4= START (user process)
5= STOP (active user pro-
 cess)

src,dest = parameters for selected sys-
tem function

status + result of the function as an
integer value:

 0 = no error
-1 = invalid command
-2 = error in source file name if COPY or er
 ror in file name if DELETE or error in file
 name if COMPILE was selected
-3 = file extension is not QLL if COMPILE
-4 = error in QLL file name if COMPILE
-5 = file not closed if DELETE or destination
 file is not closed if COPY
-6 = erro if COPY, e.g. out of memory
-7 = compiler is already active if COMPILE
 >0= number of error and warnings if COM-
 PILE or error number if START:
 1051: user process already exist
 1057: file to much open
 1073: process is an ext. sub program
 1079: sub process tries to stop its own
 main process
 1085: invalid PKT file
 1092: selected process not available
 1112: sequent. of IRD- and PKT- file
 is not possible because there's
 not enough memory available

Axes 1 and 2 are mirrored in this example.

This special function permits the required
mode of belt synchronization to be selected.
The following synchronization modes are cur�
rently implemented:
mode_belt = 1 Belt synchronization with
belt-parallel traversing of the kinematic
mode_belt = 2 Belt synchronization without
belt-parallel traversing of the kinematic.
mode_belt = 3 cam plate interpolation

4= command
(VALUE INTEGER: com

TEXT: src,dest
 INTEGER: status)

17 = mirroring
(VALUE BINARY: X_INV

Y_INV
Z_INV)

mirror, (1,1,0)

MOVE @(50,120,-25.21)

applies as of
Version
TO01E

21 = belt_mode
(VALUE INTEGER:belt_no
VALUE INTEGER:mode_belt)

applies as of
Version
TO03D

 43SPECIAL FUNCTIONSFlexible Automation

 43BAPS2 language for the control rho3

Access to the time and date of the system
clock in the rho3.

Access to an internal system counter
(real-time counter).

Coordinate transformation may lead to excess
rotation of the world orientation angles in WC.
Special function 27 serves to eliminate this
excess rotation.

Calling special function 28 assigns the value
of variable reset_value to the internal belt reset
value for the corresponding belt
The internal belt counter is set to the reset
value with signal RESET BELT COUNTER.

Calling special function 29 activates storing of
internal "commanded positions".
Stores positions as WC and JC points.
kin_no = number of selected kinematic
ms_no = number of measuring system

(axis, belt or analogous input)
which is related to the pa-
rameter 'distance'

distance = stores actual "commanded
position" when distance is
reached

note:
Storing of position after every 'distance' will be
done on default (option byte 36 = "0", but it's
also possible to store positions at every trans�
formation clock by setting the option byte 36
= "1".

Calling special function 30 terminates storing
of "commanded positions".
The stored values are saved until the next call
of special function 29 with the same kine�
matic.
kin_no = number of selected kinematic
no_points = returns the quantity of stored

points since call of special
function 29.

23 = time_date
(INTEGER: hours,

minutes,
day,
month,
year)

applies as of
Version
TO01E

24 = sys_time
(INTEGER:start_time)

applies as of
Version
TO01E

27 = wc_mainarea
(INTEGER: kin_no)

applies as of
Version
TO01E

28 = set_belt
(VALUE INTEGER: belt_no
 VALUE REAL: reset_value)

applies as of
Version
TO03D

29 = pnt_store_on
(VALUE INTEGER: kin_no
 VALUE INTEGER: ms_no
 VALUE REAL: distance)

30 = pnt_store_off
 (VALUE INTEGER: kin_no

 INTEGER: no_points)

 44 SPECIAL FUNCTIONS Flexible Automation

 44 BAPS2 language for the control rho3

Calling special function 31 makes it possible
to read the values stored by special function
29 in a ring buffer.
kin_no = number of selected kinematic
index = ring buffer index of selected

value
@position = stored position in JC
position = stored position in WC

note:
To get valid positions it's necessary to call up
SPC_FCT 29 and 30 before calling SPC_FCT
31.
The size of the ring buffer is fixed to 50 points
independent of the number of axes.

Calling special function 41 "Asynchronous
speed preselection" permits the modification
of the Vfactor of a kinematics during move�
ment.
kin_no = number of selected kinematics
poti_value = asynchronous Vfactor

Opposite to the normal "MOVE UNTIL"-state�
ment the movement by this special function is
not directly aborted if the condition is true
(probe input).
The distance in parameter m_distance is
moved before the movement is ended.

kin_no = number of selected kinematics
m_distance = distance to move after active

probe input
note:
This modified "MOVE UNTIL"-statement acts
only with probe inputs.
The base of this inputs is "700".

31 = pnt_st_read
(VALUE INTEGER: kin_no
 VALUE INTEGER: index

JC-POINT: @position
 POINT: position)

applies as of
Version
TO05G

41 = poti_modify
(VALUE INTEGER: kin_no
 VALUE REAL: poti_value)

applies as of
Version
TO05G

42 = move_dist
(VALUE INTEGER: kin_no
 VALUE REAL: m_distance)

 45SPECIAL FUNCTIONSFlexible Automation

 45BAPS2 language for the control rho3

Special function 43 permits to store the actual
position by a minimum reaction time of 0,01
ms. The measured value is stored in the stan�
dard varaiable "MPOS". The parameter flank is
used to select the trigger condition (starting
the measurement).
The channel_no indentifies, if a measurement
has occured.
kin_no = number of selected kinematics
flank = positive flank = 0

negative flank = 1
channel_no = measurement occurs = 1

no measurement = 0
note:
The probe input acts only with incremental
measuring systems.
The base of the probe inputs is "600".

Calling special function 44 disables an active
special function 43.

kin_no = number of selected kinematics
channel_no = input number of probe input

Calling SPC_FCT 45 "MOVE_FILE" a curve
chart stored in a binary file is moved by read�
ing the actual values in this file. The output
takes place in the interpolation raster or posi�
tioning control raster of the servo board clock.
The issued values are position values.
kin_no = number of selected kinematics
curve_x = name of the BNR_FILE
base = selects the output of the position
 values.
 1 = interpolation raster
 2 = positioning control raster
mod_flag = The modulo flag is used by end-
 less axes. Other axes types must
 be initialized with "0.0" in the
 BAPS-program.
The following REAL-values are possible:
0.0 = no modulo calculation
1.0 = modulo calculation at the end of the
 block. The last axes value in the
 BNR_FILE is the modulo value.
2.0 = modulo calculation at the end of the
 block. The value stored in machine pa-
 rameter P311 is used as modulo value.
reserve = reserved for future expansions of
 the operating system
restrictions:
This special function doesn't work with the rho
3.2 control.

applies as of
Version
TO05G

43 = probe_on
(VALUE INTEGER: kin_no
 VALUE INTEGER: flank

INPUT: channel_no)

applies as of
Version
TO05G

44 = probe_off
(VALUE INTEGER: kin_no

INPUT: channel_no)

applies as of
Version
TO05G

45 = move_file
(VALUE INTEGER: kin_no

 BNR_FILE: curve_x
 VALUE INTEGER: base

JC_POINT:@mod_flag
 VALUE ARRAY[1..6]

INTEGER: reserve)

 46 SPECIAL FUNCTIONS Flexible Automation

 46 BAPS2 language for the control rho3

Calling special function 46 "reduced block
preparation with MOVE-statements" permits
to reduce the internal block preparation.
The use of this special function is recom�
mended in connection with "MOVE_FILE" and
"Asynchronous Inputs".
Especially with applications of asynchronous
inputs it could be necessary to reduce the
block preparation to ensure faster recognition
of the inputs.
kin_no = number of selected kinematics
number = This value is an upper limit of
 prepared blocks of a kinematics.
 The range of this parameter is
 between 1..11.
 Values < 1 are set internal to 1,
 values > 11 are set to 11.

applies as of
Version
TO05G

46 = block_prep
(VALUE INTEGER: kin_no
 VALUE INTEGER: number)

 47TOOL - DATFlexible Automation

 47BAPS2 language for the control rho3

TOOL - DAT

Coordinate transformation for determining the TOOL center point (TCP) is adjusted in two parts in order
to permit different grippers/tools to be used during a processing run.

a) Transformation as far as the flange.
The robot-specific data are defined via the machine parameters.

b) Transformation as of the flange
The individual gripper parameters are stored in the file. Three translations (G_X, G_Y, G_Z) and three
rotations (G_D1, G_D2, G_D3), each referring to the flange, are used for general definition.

The order of the individual coordinates (first
G_X, then G_Y, ... and last, G_D3) must al�
ways be observed. Zeroes must be set explic�
itly for values omitted. The gripper name must
start in the first column and may have a maxi�
mum length of 12 characters.

A gripper is selected in the BAPS program via
command TOOL.
e.g.: The gripper coordinate system "grip�
per_1" from the file is offset.

There is no TOOL_END. However, this can
obtained by a gripper coordinate system
padded with zeroes.
(see example).

TOOL.DAT

gripper_l = 10 2.5 5 1 2 3
gripper_r = 0 50.0 1.3 5.4 0 0
gripper_1 =-20 0 120 5 0 6
off = 0 0 0 0 0 0

TOOL
ma_1 gripper_l

applies as of
Version
TO01E

TOOL
ma_1 off

applies as of
Version
TO01E

 48 FIXED FILES Flexible Automation

 48 BAPS2 language for the control rho3

FIXED FILES

EXTERNAL PROGRAM SELECTION.
The interface input numbers are assigned to
the program names (IRD) in file EXPROG.DAT.

MACHINE STATUS DISPLAY.
The interface input numbers are assigned to
the texts in file MZA.DAT. These selected texts
can be displayed via the PHG in mode 7, 12,
1/2.

SELECTION OF TEXTS VIA THE INTERFACE.
The interface input numbers are assigned to
the texts in file TEXTE.DAT.

TOOL COORDINATE description
The order of the individual coordinates must
always be observed (zeros must be set explic�
itly for values omitted). The gripper name must
start in the first column and may have a maxi�
mum length of 12 characters. (See Tool.)

EXPROG.DAT

00 = init
01 = pal1
.
FF = basicpos

MZA.DAT

01 = 'slide forward'
.
99 = 'end mza'

TEXTE.DAT

00 = 'text1'
.
FF = 'text256'

TOOL.DAT

gripper_l = 10 2.5 5 1 2 3
gripper_r = 0 50.0 1.3 5.4 0 0
gripper_1 =-20 0 120 5 0 6
off = 0 0 0 0 0 0

Flexible Automation 49BAPSPIC-SYNTAX

 49BAPS2 language for the control rho3

BAPSPIC-SYNTAX

1. Declaration part
All variables used in a BAPSPIC-program may have a maximum length of 12 characters. The first cha�
racter must be a letter. As special character only the underline "_" is permitted. Upper- and lower letters
are equivalent.
Compiler instructuions like CONTROL and VERSION must be declared before PROGRAM.
Lines containing compiler instructions should have no other characters following the statement.

COMPILER INSTRUCTION "PIC250".
Indicates that the current program is a PIC-pro�
gram (file extension "QLS").

COMPILER INSTRUCTION "VERSION".
Indicates which complier version is used compi�
ling this PIC-program (from ROPS3-Version
W2C the new BAPSPIC-compiler version 2.00
is available).
The default setting is compiler version 1.00

PROGRAM NAME.
The program name may have a maximum
length of 8 characters. The name should agree
with the file name, otherwise a warning is repor�
ted during compilation of this file.

COMPILER INSTRUCTION "INCLUDE".
Like in QLL-programs there is the possibility to
include other files in the program.
This allows to create the symbol file in a separate
file which can be included in the PIC-program
by the INCLUDE statement.
From compiler version 2.00 the file extension is
of your own choice. If there is no extension indi�
cated, the compiler uses "QLS".

;; CONTROL = PIC250

;;VERSION = 200

PROGRAM pic_io

;;INCLUDE pic_sym

 50 BAPSPIC-SYNTAX Flexible Automation

 50 BAPS2 language for the control rho3

Declaration of IN- and OUTPUTS.
All inputs and outputs used in the PIC-program
must be declared.
The symbol names are separated by a comma.
After the last symbol name in a group, the
comma is omitted (see example).

Declaration of REMANENT and NON-REMA�
NENT MARKER.
All marker used in a PIC-program must be de�
clared.
Remanent marker are declared as "BINARY",
temporary marker as "TEMP BINARY".
The symbol names are separated by a comma.
After the last symbol name in a group, the
comma is omitted (see example).

PROGRAM pic_io

.
INPUT:
0 = permiss_phg,
.
.
767 = user_24_di

OUTPUT:
16 = emerg_n_rci,
.
.
743 = user_24_do

PROGRAM pic_io
.
.
BINARY:
0 = c0_decrem_m,
.
.
191 = c31_reset_m

TEMP BINARY:
marker_1, marker_2, marker_3

Flexible Automation 51BAPSPIC-SYNTAX

 51BAPS2 language for the control rho3

2. Program part

INSTRUCTION PART.
From compiler version 2.00 the syntactical con�
struction of a BAPSPIC-program is adapted to
the BAPS2-Syntax. This means that the in�
struction part is now separated from the decla�
ration part by the keyword "BEGIN".
The end of the program is indicated by the key�
word "PROGRAM_END".

ASSIGNMENTS.
With the "="-character the value of the variable
or expression right of the sign of equality is assi�
gned to the variable on the left.
The keyword "OR" permits a logic OR-combi�
nation of several variables (var1 OR var2 OR
var3).
The keyword 'AND" permits a logic AND-com�
bination of several variables (var1 AND var2
AND var3).

IF-THEN INSTRUCTION.
The IF-THEN instruction permits the build of
conditional instructions. This means the instruc�
tion is executed if the condition is true.

The keyword "NOT" permits the examination of
a variable or expression of logic 0.

IF-THEN-ELSE INSTRUCTION.
This instruction permits the execution of several
instructions depending on the input condition.

COMPOUND INSTRUCTION.
The compound instruction is used to clamp se�
veral instructions.
Thereby it is possible to execute several instruc�
tions where normally only one instruction is per�
mitted.

PROGRAM pic_io

BEGIN
;instructions

.
PROGRAM_END

feede_aa_rci = feeden_aa_di

cyclrun_do = proc_act_rco
OR
permpr_a_rco

user_10_do = feedhd_n_di
AND
contr_aa_di

IFauto_mn_di
THEN
auto_mn_rci = 0

IF NOTuser_1_di
THEN
user_1_do = 1

IF NOT auto_mn_dI
THEN
auto_mn_rci = 0
ELSE
user_1_do = 1

IF NOT auto_mn_di
THEN BEGIN

auto_mn_rci = 0
user_2_do = 1

 END
ELSE BEGIN

user_2_do = 1
user_3_do = 0

 END

 52 BAPSPIC-SYNTAX Flexible Automation

 52 BAPS2 language for the control rho3

BUILDING COMPONENT EXPRESSIONS.
Using the parentheses "(" and ")" permits the
construction of one expression of several varia�
bles.

JUMP INSTRUCTION.
The jump instruction permits jumps to several
positions in the PIC-program.
The instruction consists of a jump instruction
(JUMP) and a destination (mark:).

feede_aa_rci = feeeden_aa_di
AND
(marker_1 OR marker_2)
OR
marker_3

IF NOT auto_mn_di
THEN
JUMP automatic
.
.
automatic:
IF marker_3 THEN user_11_do = 1

 53INDEXFlexible Automation

 53BAPS2 language for the control rho3

INDEX

Symbols
@, 19, 26

@MPOS, 29

@POS, 28

+, 18, 26

-, 18

*, 18

/, 18

=, 18

<, 18

<=, 18

<>, 18

>, 18

>=, 18

A
A, 30

ABS, 20

AFACTOR, 32

AFIX, 31

ALSO, 40

AND, 18, 51

APPROX, 27

ARRAY, 12, 13, 37

ARRAY BINARY, 12, 13

ARRAY CHAR, 12

ARRAY INPUT INTEGER, 13

ARRAY INPUT REAL, 13

ARRAY INTEGER, 12

ARRAY JC_POINT, 12

ARRAY OUTPUT, 13

ARRAY OUTPUT INTEGER, 13

ARRAY OUTPUT REAL, 13

ARRAY POINT, 12

ARRAY REAL, 12

ARRAY TEXT, 12

ARRAY,Two-dimensional, 12

ASC_ARRAY, 22

ASSIGN, 25

Assignment, 51

Asynchronous inputs, 15

ATAN, 18

AXIS ASSIGNMENT, 19

B
BAPSPIC Compiler instruction

CONTROL, 49
INCLUDE, 49
VERSION, 49

BAPSPIC Declaration part, 49

BAPSPIC instruction part, 51

BAPSPIC Program part, 51

BEGIN, 6, 7, 17

BELT, 14, 34

BINARY, 9

BLOCK_SLOPE, 33

BNR_FILE, 38

C
CASE, 17

CASE_END, 17

CHANNEL NUMBERS, 14

CHAR, 9, 37

CHR, 20

CIRCULAR, 27

CLOSE, 39

CLS, 8

COMPOUND Instruction, 51

CONDITION, 24

CONST, 19

CONTROL, 4

COS, 18

D
DEBUGINFO, 4

DEF, 10

 54 Flexible Automation
INDEX

 54 BAPS2 language for the control rho3

DEF ARRAY JC_POINT , 10

DEF ARRAY POINT, 10

DEF JC_POINT, 10

DEF POINT, 10

DEFAULT, 17

DFACTOR, 32

DRIVE_TYPE, 5

E
ELSE, 16, 51

END, 17

END_OF_FILE, 38

EQUAL , 17

ERROR, 4, 16, 27

EXACT, 27

EXCLUSIVE, 11, 40

EXCLUSIVE_END, 11

EXPROG.DAT, 48

EXTERNAL, 6, 11, 40

F
FILE, 9, 38

H
HALT, 6

I
IF, 16, 51

IF NOT, 51

IF THEN ELSE, 16

INCLUDE, 5

INPUT BINARY, 14

INPUT REAL, 14

INPUTER INTEGER, 14

INT, 5

INT_ASC, 21

INTEGER, 9, 19

J
JC, 23

JC_NAMES, 4

JC_POINT, 9

JUMP, 17, 52

K
KINEMATICS, 4

L
LIMIT_MAX, 35

LIMIT_MIN, 35

LIMIT_OFF, 35

LINEAR, 27

M
MAX_TIME, 16

MOD, 18

MOVE, 26

MOVE_REL, 26

MZA.DAT, 48

N
NOT, 18

O
OR, 18, 51

ORD, 20

OUTPUT BINARY, 14

OUTPUT INTEGER, 14

OUTPUT REAL, 14

P
PARALLEL, 40

PARALLEL_END, 40

PAUSE, 16

PERMANENT, 4

 55INDEXFlexible Automation

 55BAPS2 language for the control rho3

PHG, 37

POINT, 9

POS, 28, 37

PRIO, 40

PROCESS_KIND, 4

PROGR_SLOPE, 33

PROGRAM, 6

PROGRAM_END, 6

PTP, 27

PUBLIC, 11

R
R, 23

R_PTP, 23

READ, 37

READ_BEGIN, 38

REAL, 9, 19

REF_PNT, 26

REPEAT, 16

REPEAT_END, 16

RETURN, 7

ROUND, 20

S
SEMAPHORE, 9, 11

SER_IO_STOP, 5

SERIAL INTERFACES, 36

SIN, 18

SPC_FCT, 41
1 = exact-position switching, 41
17 = mirroring, 42
2 = exact-position parameter output , 41
21 = Belt mode selection, 42
23 = System time and date, 43
24 = System counter, 43
27 = wc_mainarea, 43
28 = set belt counter, 43
29 = store command position "on", 43
3 = set machine position, 41
30 = store command position "off", 43
31 = read stored command positions, 44
4 = command, 42

41 = asynchronous speed preselection,
 44

42 = asynchronous "MOVE UNTIL", 44
43 = fast measurement on, 45
44 = fast measurement off, 45
45 = MOVE_FILE, 45
46 = reduced block preparation, 46

SQRT, 18

START, 40

STOP, 40

SUB_END, 7

SUBROUTINE, 7

SYNC, 34

SYNCHRON, 34

SYNCHRON_END, 34

T
T, 31

TEXT, 9

TEXTE.DAT, 48

TFIX, 33

THEN, 16, 51

TIMES, 16

TO, 27

TOOL, 47

TRUNC, 20

U
UNTIL, 27

V
V, 30

V_PTP, 30

V24_1, 37

VALUE, 6

VERSION, 8

VFACTOR, 32

VFIX, 31

VFIX_PTP, 31

VIA, 27

W
WAIT, 16

 56 Flexible Automation
INDEX

 56 BAPS2 language for the control rho3

WAIT UNTIL, 16

WAIT UNTIL MAX_TIME, 16

WARNING, 4

WC, 23

WC_NAMES, 4

WITH, 30

WRITE, 37

WRITE_BEGIN, 39

WRITE_END, 39

Bosch-Automationstechnik

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Industriehydraulik
Postfach 30 02 40
D-70442 Stuttgart
Telefax (07 11) 8 11-18 57

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Fahrzeughydraulik
Postfach 30 02 40
D-70442 Stuttgart
Telefax (07 11) 8 11-17 98

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Pneumatik
Postfach 30 02 40
D-70442 Stuttgart
Telefax (07 11) 8 11-89 17

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Montagetechnik
Postfach 30 02 07
D-70442 Stuttgart
Telefax (07 11) 8 11-77 12

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Telefax (0 60 62) 78-4 28

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Schraub- und Einpreßsysteme
Postfach 11 61
D-71534 Murrhardt
Telefax (0 71 92) 22-1 81

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Entgrattechnik
Postfach 30 02 07
D-70442 Stuttgart
Telefax (07 11) 8 11-34 75

Robert Bosch GmbH
Geschäftsbereich
Automationstechnik
Antriebs- und Steuerungstechnik
Postfach 11 62
D-64701 Erbach
Telefax (0 60 62) 78-4 28

Ihr Ansprechpartner

Technische Änderungen vorbehalten

1070 073 035-105 (94.12) GB · HB RC · AT/VSP · Printed in Germany

	1. BAPS2
	2. BAPSPIC
	3. INDEX

